12月1日,DeepSeek发布两个正式版模型:DeepSeek-V3.2和DeepSeek-V3.2-Speciale。其中DeepSeek-V3.2是两个月前DeepSeek-V3.2-Exp的正式版,做到了平衡推理能力与输出长度,适合日常使用,例如问答场景,并强化了Agent能力。Speciale版本是DeepSeek-V3.2的长思考增强版,同时结合了DeepSeek-Math-V2的定理证明能力。目标是将开源模型的推理能力推向极致,探索模型能力的边界。
回顾过去一年,开源大模型生态在年初DeepSeek惊艳亮相之后集体爆发,阿里云的Qwen系列不断刷新榜单,月之暗面的Kimi,智谱的GLM和MiniMax的M系列模型均在发布后收获了国内外的好评并取得了超越当时顶级闭源模型的开源成果。这一波群雄并起的浪潮,将“开源追平乃至超越闭源”从一句口号变成了让闭源厂商感到压力的现实。然而,随着Google Gemini3.0的强势发布,凭借庞大的的算力和数据,Gemini 3.0 Pro重新定义了什么是“全球最强”。其强劲的性能甚至让同为竞争对手的马斯克(xAI)和奥特曼(OpenAI)纷纷点赞,开源和闭源似乎不复存在的差距瞬间又变成了一道新的天花板。
在公开的推理测试中,V3.2已达到GPT-5的水平,仅略低于Google最新的Gemini 3 Pro。相比同类产品Kimi-K2-Thinking,V3.2得益于严格的训练策略,其输出长度大幅降低,显著减少了计算开销与用户等待时间,真正做到了适合问答、通用智能体等日常场景的“话少活好”。Speciale在多个推理基准测试中超越了Google最先进的Gemini3 Pro。在美国数学邀请赛(AIME)、哈佛MIT数学竞赛(HMMT)、国际奥林匹克数学竞赛(IMO)等测试中,Speciale全面超越对手。不过在编程与理工科博士生测试中,Speciale仍略逊于Google的顶级模型。
DeepSeek也坦诚了自家的局限性。V3.2的世界知识广度仍落后于领先的专有模型,且为了达到Gemini3Pro的输出质量,V3.2通常需要生成更多的Token,导致效率较低。同时,在解决极其复杂的综合任务时,其表现仍不如前沿模型。面对这些差距,DeepSeek给出了清晰的改进路线:计划在未来通过增加预训练计算量来填补知识空白,并专注于优化模型推理链的“智能密度”,提高效率,让模型学会“少说话、多办事”。